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PREFACE

This report was prepared as a paper for publication in the proceedings
of the Society of Photo-Optical Instrumentation Engineers, Vol. 178 , Smart
Sensors, April 1979 .
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Introduction

In digital image processing problems, the measurements  are often represented b y a m a t r i x  o r a
sequ ence of mat rices , for example , multiple f rames collected over t ime of a two-dimensional scene. The
maximum likelihood method developed for the detection of a signal vector g iven a measurement  vector can
be applied to the de tec t ion  of a signal matrix given a measurement  matrix by stacking the columns ‘or row s)
of these mat rices to f or m ‘lon g ’ vectors .  The resulting matched fil tering operation is imp le mented by a
left matrix multiplication on the long measurement vector requiring a large number of multiply and add
computations. For real-time processing, it is desirable to avoid stacking and to operate on the measure-
ment s in their original matrix format in order to reduce the number of computations.

The paper is organized as follows: First  the proposed back ground noise model is developed to provide
t he probabil ity den si ty functions required for  the subsequent applicat ion of the maximum likelihood method .
The :-nodel is an extension of that discussed in Ref.  I for an image transform coding applica tion. Both
the cases of a sing le f rame of background and multiple f rames of background are considered.  Next , the
maximum likelihood method is applied t o the pr oblem of choosing the most  likely pat tern out of a set of
possible pa t te rns  fo r th e case of a sing le measurement  f rame.  The extension is then made to the problem
of choosing the most likely pattern sequence out of a set of possible pattern sequences for  the case of
multi ple measurement  f rames .  For the multiple f r am e case , the maximum likelihood method results in
tem poral (i. e . ,  f rame-to-frame) matched f i l ter ing,  in addition to the spatial matched f i l t e r ing  character-
istic of the sing le f ra me case. Also discussed in the paper is the alternative of t ransform domain
processing.  Finally, two numerical examples are presented relat ing to the detection of targets .  For com-
parison with other authors , note that in Ref. 2 both temporal and spatial matched fil tering are combined
wi thin the f ramework  of a stacked measurement  vector.  In Rei . 3 results a re  presented for temporal
matched f i l t e r i n g  alone applied to the problem of target  detection .

Background N oise Model

Background noise is modeled after extraction of its mean as an invertable left and rig ht mat r ix  multi-
plication on a zero meat , s ta t ionary  white matrix:

X = HWG T T race(H TH) = N ; Trace(G TG) = M ( I )

In Eq. (1), X = [b(k , i )j  is an N~ M matr ix  representing background , H is an N~~N ma tr ix , G is an M x M
matr ix, and W = [w(k , i) ]  is an N x M  stat ionary white ma t r ix .

The elements of the white  mat r ix  have the second-order s ta t is t ics

E [w(k , i ) ]  = 0 ELw(k , i ) w ( r , s ) J  G 6 k r~ i s 
(2 )

whe re 1k r I only if k = r and is otherwise zero. The model proposed here is an extension of the model
assumed for  genera t ing  the second-o rder s ta t is t ics  of random vectors , i . e. , that the random vec tor is
f ormed b y a ma tr ix  multipl ica t ion on a s tat ionary white vector.
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It follows f rom Eq. (2 )  that , fo r a rb i t ra r y N ~c N ma t r ix  01 and a r b i t r a r y  M) < M ma t r i x 02

EL W T 01 w] = Trace(Q l ) Y 2 IM E(W 
~ 2 wT ] = Trace(Q Z )c

~~IN (3)

where 1M is the M M ident i ty  matrix.  It follows f rom Eqs. ( I )  and (3)  that

Trace(E[XX T / N M ])  = Trace(E [X T X / N M J )  ( 4 )

E [XX T /Ma Z ] = HHT ~ R 1 E LX TX/ No Z ] GGT ‘
~~ R2 

(5)

where  the N xN  mat r ix  RI  denotes the normalized row correlat ion mat r ix  and the M X M  matrix R2 the
normalized column correla t ion mat r ix .  It follows f rom Eqs. (1 ) ,  (3) ,  and ( 5) that the back ground correla-
tion is

E [b(k , i )b( r , s)] = a 2[R I ]k r [R 2 h i , a (6)

where  [ i k  r denotes the k, r ele ment of the enclosed mat r ix .  Thus , the back g round co rr elation is pr odu ct
separable in row and column indices.

Trans form Statistics

Consider  next a real un i t a ry  t ransformat ion on X of the form:

z = uTxv = uT 
= v T ( 7)

In Eq. ( 7 ’ , 7. = [z (n , I)]  is a real N~x M matr ix of t ransform coefficients , U is an N x N  real unitary matrix
and V is an M ~ M real un i t a ry  matr ix .  It follows that X = U/ V T is the inverse  t ransformat ion.  The indi-
vidual t r a n s f o r m  coeff icients  are z(n , 1) U~

’XV9 , wher e is the n th column of U and V 9 is the ith column
of V. It fol lows f r o m Eqs. ( 1 ) ,  ( 3 ) ,  (5 ) ,  and (7)  that the t ransform coefficient  correlation is product
separable  in row and column indices:

E[z(n , 9)z ( r , a)]  = a 2 (U~~R t Ur ) (V T R iV 5) ( 8)

E[z 2 (n , 9)] = a 2~~B~ (9)
‘
~~ .~J~

’R 1U~ ; B~ 
‘
~~ V~

’R2 V1 ( 10)

N e xt , choose U and V such that UTR 1U and VT R 2 V are  diagonal matrices.  Then the \~ and B 9 a r e  the
positive ei genvalues  of R 1 and R2, res pect ivel y:

U TR U  = DN[ k ]  
~ . V ”R 2 V = DME B I] ~ ( 11)

This choice of U and V is the Karhunen-Loeve  t ransform of X because it gives uncorrelated transform
coeff icients :

E[z(n, i)z(r, a)] = 0 for (n , I )  ~ ( r , s) ( 12)

Probabilit y Density

Assum e that the w(k , I) elements of W are jointly Gaussian. It follows from Eq. (1) that the b (k , i)  ele-
ments  of X a re  also j oint l y Gauss ian .  Wit h ‘Z = U T XV the Karhunen-Loeve t ransform , the z(n , 9) elements
of  1. a re  mutual l y inde pendent and Gaussian.  The probabil i ty  density of the mat r ix  Z writ ten as a function
of the t r a n s f o r m  co ef f i c i en t s  is the re fo re

/ M Nf exp (_ o.  s E ~~ z
2

(n, t) /a 2 \ B 9 ) (13)
\ 1 = l n = I  /

w h e re  the cons tan t  A (2~ro~~)NM
~~~( Det R 1 )M I’2 (Det R2 )N 1 2 . But ~~~z 2 (n , 9 ) /k ~ B , = Trace (X~~ Z B~ Z T ) and

t h e r e f o r e  the p r o b a b i l i t y  d e n s i t y  of the m a t r i x  7 can be w r i t t e n  as the following scalar function of ma t r i ces :

~~~~~ -

~~ 
exp (_ ~o . 5/ ~

2 )T r a c e l X ~~ 7B 1 Z T
)) (1 4)

8
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From Eq. (l1)X ~
1 = UTR1I U and r1 r VTR~

I V. Thus. Trace (X 1 Z~~~~Z T ) =  T rac e (U T R j 1 u z v T R~~
V ZTUTU = Trace(Rj1 X R ~

1 XT). Therefore , the probabil i ty den s i t y  of the matr ix  X i s

= ~ exp (-~ o. 5/a 2 )T r ac e (R ~~ X R ~
1 X T

)) (15)

Mu lti ple Frames  of Back ground

Consider a sequence of X l . . . X L of L back ground mat r ices .  For the ~th f ra me of the sequence
ass um e that

X. = HW.GT = i , 2 L (1 6)
J 3

The elements of the sequence of white matr ices  arc assumed to have the second-order statistics

E[wj (k
~

i)wm (r . ~~~~ 
= ° 

~‘jm
8k, r 5 i , s ( 1 7 )

whe re the Pjm a re  elements of a positive defini te  L X L , f rame correlation matr ix p. It follows that for
arbi t r a r y  N xN  ma t r i x  Qj  and a rb i t r a ry  M x M  mat rix 

~~

E[W~~Q 1 w0~] = Trace(Q t )cJ 2
P~lfl IM ; ELW

J
Q

2 W~~) = Trace(Q Z )a 2
P j m IN (18)

It follows f rom Eqs. (1 6) and (18) that the back ground correlation is product separable in row , column , and
f r a m e  indices :

E[b
j

(k
~~

i)bm (r
~ 

s)] = 02
P jm~~~1]k, r~~~21i , a (19 )

The un i t a ry  t r a n s f o r m a t i o n  of X3 is

z. = uT x~v ( 2 0 )

It follows f r o m  Eqs.  (1 0),  (16) ,  ( 18),  and ( 2 0 )  that

E [z . (n , Q)z (r , s)~ °
2

P jm (32~~ 
R i !~

I r )( _VTR 2_Vs ) ( 2 1 )

E[z~ (n . ~
)Z m (fl

~ 
9)1 = a P j m

)\ n B , (2 2 )

For U and V chosen as the d iagonaliz ing  t r a n s f o r m s  of RI  and R 2, respec t ive ly, (i .  e .,  the Karhunen-Loeve
t r a n s f o r m )  the t r a n s f o r m  c o e f f i c i e n t s  at d i f fe ren t  position indices are  uncorre la ted :

E[z .(n , i)z
m

(r , a) ]  = 0 f o r  (n , I) � ( r , a)  and all j ,m (23 )

Assume that the w~(k , i) elements of W. are jointly Gaussian in both position and f r a m e  indices.  It fol-
lows f rom Eq. (1 6) thai’ the b~(k , i) elementA of X3 are also joint l y Gaussian in both position and fr a m e  m d i
indices. With Z3 = UT X~ V the Karhunen-Loeve t r ans fo rm, the z 1(n , i) element s of Z~ a re mutuall y ind epen-
dent in position indices and jointly Gaussian in frame indices. ‘rhe joint probability density of the sequence
of mat r ices  Z j . . . written as a function of the transform coefficients is therefore 

‘L~ 
= ~r exp (_0. ~ ~ .E E E ~j~~~zj

(n~ f ) Z
m

(fl
~ 

l )/ a 2 k~~B 9)  
( 24 )

m= 1 j=l 9=1 n 1

In Eq. (24 )  the ~jm ar e the elements of p 1, the inverse  of the f r a m e  correlat ion matrix , and the constant
A’ = ( 2 r a Z ) NM 1~/2 (Det R 1) ML / 2 (Det R 2) N L / 2 (Det p ) L /2 . This joint probabi l i ty  den sit y can be wr i t t en  as
the following scalar function of matr ices:

f
z (Z l. . . ZL) = ~~r exp (~~o. ~/°2 ) E  

~~~~~~~ 
T r a c e( X 1 Z .~~~~

i Z T
)) (2 5 )

The joint probabi l i ty  densit y of the sequence of matr ices  X j . . . X L is therefore

X L) ~~ exp(~(O. 5/a2)
,
~~~

1 j
~~

1
gjm Trace(R t X

j~~~
t X~~)) (26)
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M a x  i u , , u ,n  I , i k  el iliouci D, ’tec t i ,~ n of a I’a t t e  rn  f ru n ~ a Sing le F raine

l ( i ~ pr  ht~’n, i s  t~, e l , , ,t ,se t h e  roost  l ik e l y pat ’ c rn  and i ts  a s so c ia ted  i n t e n s i t y  f r o m  a s i n g le m ea s u re  —

r n e ~nt I r , , r 1 i , . Fh t ’  ,n , -~~su r , ’n i e nt  e q u a t i o n  a f t e r  ext , . i ct i , ,n  of t he  mean  b a c k g r o u n d  is

y a S t - X ~Z 7 )

~ he r i  Y is  t he  r\ ~ M m e a s u r e men t  m a t r i x . X i~ the  back ground  n ,a t r i x , S is the p a t t e r n  m a t r i x , and the
p a r a m e te r  ‘a ’ is the  p a t ter n  i n t e n s i t y .  The p a t t e r n  S is a m e m b e r  of a co l le c t i o n  of K p o s s i bl e  p a t t e r n s

S e[s 1, S2 sK I (2 8)

The p a r a m e ter  “a ” is a m emb e r  of the  i n t e r v a l  of poss ib le  i n tcn ’s i t i e s  (or amp l i t u d e s )

a E[a , a I ( L I I )
mm ma x

Cons ide red  a r c  the K + I h y p o t h e si s

110 
: a = 0 and no p a t t e r n  p r e s e n t

H. : a E[a , a I and S S. = I , 2 K (3 0)
i m m  rr iax

The l ike l ihood  r a t i o  f o r  the  1th h ypothes is  is def i n e d  by

A .  ~~~f( Y / a , H . ) / f ( Y / H 0
) ( 31 )

whi ’ re fi  Y I a , H . )  is the cond i t i ona l  p r o b a b i l i t y  d e n s i t y  of Y g i v e n  that  H. is t r u e  at a spec i f i c  i n t e n s i t y  “a ”
and f l Y / l i 0 ) is ’the cond i t iona l  p robab i l i ty  d e n s i t y  of Y g iven  the nu l l  h y po th e s i s  H 0. it f o l lows  f r o m
Eq. (2 7 )  t ha t  ‘i~~ = 

~~~~ - a S~ ) / f x ( Y )  w h e r e  f~~(~ ) is the  p robab i l i t y  d e n s i t y  of the  back g ro u n d .  The most
l i k e l y h y p o t h e s i s  is found by m a x i m i z i n g  

~~ 
or e q u i v a l e n t ly m a x i m i z i n g  i ts  l o g a r i t h m .  Def ine  the m th

h y p o t h e s i s  d i s c r im i n a n t  as t h e  l oga r i t hm of the likc lihood r a t i o :

D(a , S1) ‘~ log~~.\ . = [og~~f~~(~ - a S~ ) - log f~~
(Y ) ( 32 )

U s i n g  Eq.  ( 15 )  f o r  
~~~~ 

the d i s c r i m i n a n t  is

D(a , S) = (0. 5/G 2 )[2 a T r a c e ( R~~
1 Y R~~

1 ST ) - a 2 Tr a c e ( Rj ~ SR 2
1 sT )J ( 33)

N e x t , D ( a , S~ i s  m a x i m i z e d  w i t h  r e spec t  to the  amp l i tude  “ a ” to y ie ld  an amp li tude e s t i m a t e  a. The
r e s u l t  is ~ S a : f o r  a E~~amj n ,  amax] ,  a = amin  fo r  a : < amin  and a amax  f o r  a > amax wi th  a- - the solu-
t ion  to D(a , S)/ ~ a = 0:

a~ : T r a c e (R Y R t ST ) / T r a c e(R ~~~ S R~~~ ST ) ( 34)

P lac ing  a at the b o u n d a r i e s  of [aj n in.  amax ] when a : is outs ide  this  i n t e r v a l  fo l lows  because  D(a , S) is a
pol y n o m i a l  of the f o r m  2a Cj  - a C2 wi th  C2 >  0. For those  p a t t e r n s  wi th  a = a~~, the n D(a , S) = D(a , S) :

• 5) ( 0. 5/a 2 ) [T r a ce ( R  1 y R~~
1 ST ) I 2 / Tr a ce R~~ SR~~

1 
sT ) ( 35)

The  mos t  l ike l y p a t t e r n  m a x i m i z e s  D(a~, S1 ) w h e r e  E ’1. ( 3 3 )  is used if a1 = amin or ai~~ax and Eq. (35)  is
used if a j  -~ a- . Denot ing  the  m o s t  l i k e l y  pa t t e rn  S then  D(a , ~ ) max  D ( a i ,  Si) .  The choice  is made be tween
the most likel y pat tern and the null  hypothe s is  by a th reshold  t e s t .  1 If D( a , ~ ) >  T accept  a , ~ and if
D(a , ~ ) � T choose H 0. The t h r e sho ld  is set such tha t  the  f a l s e  a l a rm p r o b a b i l i t y  P rob[D(a , ~ ) >  T/ H 0] is
accep tab ly  low, li the c o r r e c t  p a t t e r n  is chosen  and if a = a : , the n E[(a  - a) 2] = n 2/ T r a c e( R ~~ SR~~

1 5T ),
the amplitud e es t imate  e r r o r  v a r i a n c e, is a m e a s u r e  of the d e g r e e  of background  suppress ion  achieved.

Fo r each hypothesized pa t t e rn  S the Trace  (RI 1 Y R~~’ s
T ) is computed, which  is a spatial matched fil-

t e r ing  opera t ion  on the  m e a s u r e m e n t  ma t r ix .  This  is analogou s to the w e l l - k n o w n  matched f i l t e r i n g  opera-
t ion  on a measurement  vec to r 14) ’  ( 5 ) ~ Our case reduces  to the vec tor  case fo r  M = 1; then Y = ,~~

, R2 ’ = 1,
S = s, and T r a c e  (R 1 ’ Y R~~

1 sT ) = T r a c e  (R 1 I 1s T ) ~T R 1 1 1, which is the we l l -known  f o r m .  If we had used
the procedure of s tacking,  t hen 1  would be a vector of length NM and Rj 1 would be a N M X N M  matr ix .  Thus ,
R1 1~~ would r e q u i r e  ( N M ) 2 multi pl ica t ions . By cont r ast , the  ope ra t ion  RI ’ Y R~~

1 r e q u i r e s  only N M ( N  + M)
mult i plica tions.
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Maximum Like l ihood De tec t ion  of a Sequence of P a t t e r n s  f r o m  Mul t ip le Frames

The problem is to choose the most  likel y seque n ce of pa t te rns  and the i r  associated intensities from the
c o r r e s p o n d i n g  sequence  of m e a s u r e m e n t  f r a m e s .  The m e a s u r e m e n t  equat ion fo r  the 3th f r a m e  is

Y ( j )  a ( j ) S ( j ) + X
3 i = 1~ 2 .  . . L (36)

The pat tern  S( j )  is a member  of a collection of K~ poss ib le  f r a m e  j pa t t e rns

— 
S(j)~~[S ,( j ) ,  S2 (j )  . . . Si<~’J )] (37)

The pa ramete r  a( j ) is a member  of the f r ame  j in terval  of poss ib le  in tens i t ies

a ( j )E [ a~~~~~(j )~ a~~~~~ (j) ]  (38 )

Considered fo r the ~th f r a m e  are the K3 + I h ypotheses

H 0 (j )  : a ( j )  = 0 and no j th f r a m e  pat tern
(39 )

H~ (j )  : a ( j ) E { a  i n h j ) ~ a ~ (~)I and S(j ) = S~(j )  ; ~ = 1, 2 . . .

The likelihood ratio is formed assuming a part icular  sequence of L frame hypotheses i 1, , i~~.
where i~ E [O , I . . . Kj ]:

f ( Y ( 1 ) ,  . . . Y ( L ) / a ( 1 ) ,  . . . a(L)  ; H. (1) ,  . . . H. (L) )
1 L (40)

~1, 12 ‘L f ( Y ( i ) ,  . . . Y ( L )/ H ~~( 1 ), . . . H0 (L))

It follows f r o m  E q. (36)  that A11, . . . iL = f X ( Y ( 1 )  — ~( i ) Sj~~( i )  . . . Y(L) — a(L) S1L(L )) / f X ( Y ( I ) .  .
Y( L)) .  The discriminarit is defined as the logarithm of ~mm e likelih d ratio:

D ( a( 1) ,  . . . a (L)  
~~~~~~~ 

, . . S~~ ( 1) )  ‘~~ log~~A j j  
~~~~ 

(41)

It follows from Eq. ( 26) for the joint probability density of X 1 . . . XL that

D(a(1), . . . a(~L) ;S(1),  . . . S(L))  = (0 .  5/a 2 ) ~~ ~jm [2a j~~r race(R~~
1 Y(m)  R~~

1 5T (J ))
rn-I ~j-1

- a (j ) a ( m ) T r a c e(R ~~
1 S(m)R ~~ s

T (J))] (42)

In general , de terminat ion of the ampli tude es t imates a(1) . . . a(L), which maximize  the discriminarit
is a quadra t i c  p rogramming  problem. There are  severa l  special pa t t e rn  sequence hypotheses  for  which the
solution is not difficult. One example is the case of a stationary scintillating pattern, which m eans that all
f rames a r e hypothesi z ed to have the same pat te rn but possibly different intensit ies.  A second example is
the case of orthogonal pattern sequences and is discussed next.

Orthogonal Pat tern  Sequences

In this section, the patterns from different frames are assumed to be orthogonal. The orthogonality
condition is defined here  as

Trace (R 1 S(m)R~
1 sT

(j )) = 0 f o r  j  � m (43)

It follows f rom Eq. (42 )  that  the d i s c r i m i n a n t  is f r a m e  separable, i . e . ,  D ( a ( l ) ,  . . . a(L) ;S(1 ) ,  . . . S(L))
= ED~( a(j ) ,  S( j ) )  where the j th  f r a m e  d i sc r iminan t  is

D . ( a ( j ) ,  S( j ) )  = (0. 5/a 2 ) [2 a ( j) T r a c e(R~~ ‘V(j ) R~~
1 sT

(j ;)  - g ..a 2 ( j )T race(R 1 S(j)  R~
1 sT j) )] ( 44)

V(j ) ~ ~~~~g .~~ Y( m)  (45)
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The ~th f r ame disc m - iminant is maximized with respect to the amplitude a(j ) to yield an amplitude estimate
&(j) .  The re sult is â( j )  = a~ (j) if ~~~~~~~~~~~~~~ a~ .~~~ (j )J ,  â(j) = a~~j~~(j) if a”(j) < a~~ j~~(j ), and &(j )  = arnax (J )
if a~ (j)  > a~ .1~~~(j )  with a (j) the solution to aD~(a( j ) ,  S(j ) ) / aa ( j ) = 0:

a : (j )  = Trace(R 1 V (j ) R ~
t sT (j ) ) / g j j T race( ~~~i S(j ) R ~~ ST (j) )  (46)

D .(aa(j ) ,  S(j )) = (0. 5/a 2 ) [Trace(R 1
~~ ( j ) R ~~ S

T
(j ))J

2 / g. .Trace(R 1 S(j ) R~~ 5
T

1~>) (47)

Denot in~ ~he most likel y j th f rame pattern ~(j), then D~(a(~ ), ~(j )) = rn~~x D~ (~~ (j )~ Si (j ) ) .  If D~(a(~), S(j))>T
accep t ~(j) , S t i ) ,  and if D~(&(j ) , ~(j ) )  � T choose H0(j) .  If tEie correct j th i frame pat ter n is chosen and if
a (j) = a’~(j),  then the amplitude estimate e r ro r  variance is E [(a(j )  - a (j)) 2] = a 2 /g~~T r a c e ( Rj 1 S (j ) R ~

1 ST (j) ) .
Since typicall y gj j >> I , additional background suppression is achieved over the sing le f r ame  case.

One appl ica t ion of the orthogonal pattern sequence case is the detection of a moving point target . For
exponential row and column background correlation, two pos;tions a r e  orthogonal if either their row or
column indices differ  by 2 or greater.  Shown in Fig. I is the moving target multip le fram e processor for
a~~j~ (j) = 0, am~~~(j)  = ~~ . The determination of the target  location in f ram e j involves the following steps:

I)  Temporal (or f r ame- to - f r ame)  matched fil tering , which_means th at a lin ea r combination of
measurement f r am es is computed as given by Eq. ( 45) to yield Y(j) .

2 Spatial matched fi l tering,  which means that Y(j )  is pre- and post-multiplied by RI and
respecti vely.

3) Computation of the amplitud e estimate matrix A’:~(j)  where each element of this N xM matrix is
computed from Eq. (46) with S(j) a point pattern. That is , EA~:j ] k , ~ 

= a’:~(j )  computed for  [S(j) J ~ = I and
all oth er elements of S(j) zero.

4) Computation of the discriminant matr ix  D” ( j )  where each element of this N x M  matrix is computed
from Eq. (47) with S(j) a point pattern as discussed in step 3.

5) Determination of the largest ED~:~(j)]k , with the corresponding [Ai; (j )]~ , ~ > 0. If this largest  element
of D :’( j)  exceeds the threshold T, then accept its indices as the most lik ely target  position and the corre-
sponding element of A’~(j) as the amplitud e estimate. If the threshold is not exceeded, then decide that
there is no target  in f rame j.

T rans fo rm Domain Processing

Assum e that Ti and V are chosen f rom among the uni tary transform matr ices  that have fast algorit hms
and are known to de-correlat e data. Examples include the discr et e cosine. Walsh-Hadamard , and Slant
transforms. Assum e that the particular choice of transform is close enough to the Karht pen-Loeve
t rans fo rm for  the background f rames  such that k~ and B~ parameters exist with R 1 ~ UXU , R2 V~ V T.
The spatial statistics of the background f rames  for t ransform domain processing are  characterized by the
X n and B~ parameters .  These parameters  would be found by appropriate statistical tests on f rames  of
t r ans form ed background(1) .

Defi ne for  the sing le f rame case

z~~~~uT~~v ; z5 = u ’r sv (48)

where  Z y and Z S are the N X M transforms of the measurement  matr ix and pattern mat rix , respect ively .
Equations (33)  - (35) app ly for  the determination of most likel y pattern with the subst i tu t ions

Trace( R~~
1 Y R ~

1 sT 
= Trace (X ’ Z .~~~

1 4) = ~~ [z~ ]~ 9[Z 5]
n 9 / \ n B 1 4 1 )

1 1  n - I

Trace(R~~~5R~~~S
T ) = Trace(X Zs~~~~Z~

’) = ~ [z 5]2 
~~~ ( 5 0 )

9= 1 n - 1
Defi ne for the multiple f rame , ortho gonal patte rn sequ en ce case , ~~y ( j )  = U T V j ) V  and / - s( i ) U1 S~j ) V .
Equation s (44~) -J 4 l) apply~for  the determina1ion of t1ie most likel y j th f rame p311cm with the su b st i t u t i rn.
for  T r a c e ( Rj  Y( j )  Rä ’ S~~(j ) )  and Trace (Rj  S(j) R~ ST (~ )) analo gous to Eqs. (49 ) and ( 5 0 ) .

False Alarm Probability

For the sing le f r a m e  case, if H 0 is t rue then Y = X and D(ai , S~) = 0. ST ~ where i~~ Trace
( R j  X R~~ S~~)/o IT ra c e (R j ’ S1 R~ S~~) is zero mean Gaussian with unity var iance .  A fa l se  a larm occurS
if one or more of the d iscr irn inants  D(a~, S1) ; i = 1, 2 . . . K exceeds t}~e threshold T given that H0 m a t rue.
If a .  = 0 and a ~ then a fa lse  a l a rm occurs  if one or more  of t~. exceeds v’~~~. The probabi l i ty
of false alarm is therefore  one minus the probabilit y that all the 

~~ 
E ( - ~~, ~~~~~~ The d i f f i cu l ty  in making
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t h e  c a l c u l a t i o n  is that  t hese  l~j a r e  in general correlated. If the patterns 
~~ 

a r e  or t h o g o n a l  I i .  e’ .
T r a ce ( Rj  S~ R; ’ ST) = 0 for  i / j ) ,  then these 

~ i a re  independent  and the fa l se  a l a r m  p r o b a b i l i t y  is

I’rob[D(&,S; > T /l l0] = 1 - (0. 5 + e r f ~ 1~~~)K ( 5 1 )

Fo r the  multip le f r a m e, orthogonal pattern sequence case , if H0 (j)  is t rue  then Y( j ) - X~ and
Dj(a (j), S1(j ) )  - 0. 5~~~ ( j ) .  The random variable T( 1(j )  ‘~~ T r a ce ( R j 1 

~ j R~
1S~

’(j ) ) /
cr 
~/g 1~Trace (Rj

1 S1 (j)R~~ S~~(j)) is zero mean Gaussian with Unity variance where 
~~ ~~~~gjniX,n is definedanatogousl y to Eq. (453 ’. 11 amin ( j )  - 0 and ama,~( j )  and if the patterns S~(j) are orthogonal in both

i and j indices , then the false alarm probability Ibr each frame is the same as Eq. (51) with K~ rep l a c i n g  K.

N u m e r i c a l  Examples

Considered first is the detection of a point target from a sing le f rame given that  am in  = 0 . am~~~
The no rma l i zed  co r re l a t ion  m a t r i c e s  R , and R 2 a r e  assumed to be exponential  wi th  [R i lk i = ~~Ik - i !  and

[R IJ k - ~~~~ For computer  simulat ion, the back ground is genera ted  by X = HWG T w h e re  th e elements
of W ~~re obtained by cal ls  to a Gaussian numbem generator , H is the lower triangular solution to HHT R1and G is the  lower  t r i a ng u l a r  solut ion to GG T = R2. The simulated frame of measurements is Y = aS + X
w h e r e  S is  a matrix of all zeros except for a one at the target position.

The example is for a f r a m e  size N = M = 16 wi th  threshold  T - 6. Shown in Fig.  2 is a 3-dimensional
p lot of the discriminant matrix D~ for the case a = 1, a = I , 

~~ 
- p~ = 0.9 and target  position (5 , 7) .  The

l a r g e s t  element of D: is at the correct position with [D’~I 5 , 7 4 1 . 9  ~= T. The corresponding [A:-]5 7=0.961and since th i s  is pos i t ive  it follows tha t the ampli tude est imate is ~ = 0.96!.

Cons ide red  second is the detec t ion of a moving point target from two f rames  given that a~~j~~(j )  = 0,
amax(j )  = ~0 f o r  j = 1, 2. It fol lows f rom Eqs.  ( 3 6 )  and (45)  t ha t  Y ( 1)  = g~~1a ( 1) S ( l )  + gj2a(2)S(2) + gjjX j
+ gj 2 X 2 and Y ( 2 )  = g~~~a ( l ) S ( I )  + g22 a ( 2 ) S ( 2 )  + g2j X 1 + g22X2. Assuming exponential correlation between
f rame’s of p then gj  g2, - I /L 1 - p 2 ) and g 12 ~~~~~ 

= -p1 ( 1 - p 2 ). The back ground m a t r i c e s  X 1 and X2a r e  gene ra ted  f r o m  X 1 flW 1G ’ and X 2 = }IW 2GI where E[wj (k, i)w 2(k , i)] = o 2 p .  The element~ wj j k, i )
and w 2 (k , i )  a le simulated by the  two equat ions  w 1(k ,  i )  = an 1(k , i) and w2(k , i)  pwj(k, i )  + ( 1 - p ) 1 f ~
a n2 (k , i ) ,  r e spec t i ve l y,  w h e r e  n~ (k , i) and n2(k , i) a re obtained by separate calls to a uni ty  variance
Gauss i an  n u m b e r  g e n e r a t o r .  Tfie normal ized  corre la t ion m a t r i c e s  RI  and R 2 are assumed to be exponen-
tial , as in the f i r s t  example.

T h e  examp le is  f o r  fr a m e  size N M = 16 wi th  th r eshold T = 6. Shown in Figs.  3 and 4 a re  3-dimen-
sional  plots  of D - : ( 1 )  and D : ( 2 )  f o r  the case  c - 1, a ( l )  = a ( 2 )  = 0 . 5 , P 1 = P2 = p 0.9 and f rame I and 2
targe .t  pos i t i ons  (6 , 12)  and (5 . 10) ,  r e s pe c t i v e l y. The l a rges t  element of D ( 1)  is at the cor r ect f r a me I
pos i t ion  wi th  F D : ( l ) ] 6 , 12 - 59. 7 . The’ c o r re s p o n d i n g  amplitude est imate is ~ ( l )  = 0. 500. The largest
e l emen t  ‘f D ( 2 )  is at the  i n c o r r e c t  f r a m e  2 pos i t ion  of (6 , 12). However, thi s position is rejected
because the  c o r r e sp o n d i n g  amp l i tude  e s t i m a t e  is  negat ive .  The second l a r g e s t  element of D (2 )  is at the
c o r r e c t  p i i s i t i i n ~‘, m t h  [ D (~i ) ] 5 10 4 9 . 2 .  The cor responding  amplitude est imate  is a(2)  = 0.454.

Conclusions

The max imum likelihood method has been applied to the problem of choosing the most likel y pa t te rn
seque nce f r o m  mult i p le m e a s u r e m e n t  f r a m e s  corrupted b y backgr ound. By assuming that the back ground
c o r r e l a t i o n  is p roduc t  sepa rab le  in row , column , and f r ame  indices , the resulti ng p rocessor is a matr ix
spatial and temporal  matched f i l t e r  in which the measurement f rames are processed in their ori ginal
ma t r i x  format .  If desired , the process ing  can be done in a t r ans form domain in order to take advantage
of fas t  t r a n s f o r m  algor i thms.
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